
A PROJECT PROPOSAL

FOR THE

INVENTORY CONTROL SYSTEM

FOR

CALCULATION AND ORDERING OF

AVAILABLE AND PROCESSED RESOURCES

GROUP 9

 SIMANT PUROHIT

 BART MICZEK

 AKSHAY THIRKATEH

 BOB FAIGAO

Executive Summary

Our proposed project is a real time implementation of an inventory control system for an on-site

corporate restaurant management and catering company. One such company is Guckenheimer

(www.guckenheimer.com) which builds, staffs, and upkeeps corporate kitchens as well as

provides catering services to corporate companies. This project is specific in that it applies to the

dining domain of restaurants, but is flexible enough to be applied to many different kitchens and

restaurants. In the case of Guckenheimer, they can use the software in their kitchens across the

nation. The scope of this project will primarily focus on Guckenheimer’s kitchen and inventory

located at the Groupon Chicago Office.

Currently at Groupons kitchen, and the food industry in general, restaurant staff and managers

are forced to keep track of inventory by hand. This means that they must count what they have

sold and what they have left at the end of each day. They must also fill out order forms to be sent

to vendors so that they can restock their inventory in preparation for the next week. This wastes

valuable man hours and is a rather simple task to automate using our software.

We propose a solution to this issue by developing software that keeps track of inventory in the

“back of house”, or kitchen, and updates it according to daily sales. Each food item is linked to

respective resources (or ingredients) and as each product is sold the ingredients utilized in

making that product are also utilized. These changes in inventory are kept track of through

utilizing a database.

We propose to keep track of each and every ingredient by dynamically linking it to the product

and as a result create a dependent relationship to that product. At a specific time period (typically

the end of the week); if the inventory is below the threshold level, order forms to the specific

vendors are generated in order to restock the required items for the next week. The project also

makes smart predictions on required inventory for the following week based upon the predicted

climate and possible occasions or events that may influence near future sales. At the end of the

week, the software takes into account all threshold levels, predictions, and other factors to

generate an order form, which after being verified by the manager is sent out to the vendors.

The Purpose of the Project

A case study at ‘Guckenheimer’ (an on-site corporate restaurant management and catering

company) cited issues regarding a basic resources requirement list that has to be maintained

manually by the staff. To keep track of their inventory levels they have to calculate a list of the

groceries utilized during a course of time, calculate and analyze the requirements for the future,

and place their next order to the vendors if needed. This process takes up a lot of time and human

effort, and is also prone to human error.

This poses a problem of a situation that the staff at ‘Guckenheimer,’ as well as many other

restaurants faces. It takes up a lot of time to manually keep track of sales and place correct orders

to vendors, wasting useful labor in trivial works. A product which would assist in tackling the

above mentioned problems would prove to be fruitful to clients such as ‘Guckenheimer’ and

similar enterprises as this product would help convert the unproductive time to something more

useful, by removing the unnecessary error prone complications and efforts.

Goals of the Project

The project aims at providing an efficient interface to the restaurants for managing their grocery

inventory based on each item sold. The basic idea involved here is that each item is linked to its

atomic ingredients which are stored in a database. At the end of each day, the system analyzes

the total sale of menu items and proportionately deducts appropriate amount from the resource

database. Then it compares the current available resources with the threshold level of each

ingredient. If it finds that certain ingredients are below the threshold, it will generate a purchase

order for those item(s) and send it to the manager (admin) for approval.

We also propose to include a special feature “Prediction”. This feature keeps track of any

upcoming occasions, climatic changes and special events that may influence inventory needs for

the upcoming week. The system will then predict the required resources for these events based

on previously accumulated information/knowledge. It will now generate an updated purchase

order in accordance with the predictions.

The product also aims to keep track of the shelf life of resources. If any resource nears the end of

its shelf life, it would intimate to the manager (admin) the details of the quantity that is near its

expiration date. The restaurant must function efficiently, the groceries must be tracked correctly,

timely orders must be sent out to the vendors, and the inventory must be maintained and updated

at all times.

The Domain

This proposed project aims at inventory control in the restaurant and catering Industry. Such a

large domain would result in an equally as large scope of development. As a result we narrow

our software down to our case study of an outlet of Guckenheimer concentrating only on the

basic resources utilized in inventory control of the outlet. Although the software will be

developed keeping in mind the needs of Guckenheimer and available data at first, then applying

it to the larger domain of the entire restaurant industry can be achieved with ease.

Our target domain is full of software to track sales of food items, but lacks in this area of

inventory management. Our software can be scaled from large corporate dinings all the way to

small privately-owned restaurants. It is also fairly domain specific: the database runs off recipes

which generate the necessary ingredients. It also updates the inventory based off of the sale of

those recipes. This requirement focuses our product to our domain and makes it more appealing

to those looking for a solution to this specific problem.

The Client

The client can vary from private restaurant owners to corporate restaurant management

companies, such as Guckenheimer (www.guckenheimer.com). A corporate restaurant

management company that starts up, staffs, and oversees the everyday workings of a corporate

restaurant, such as the one in the Groupon Chicago office. As stated above, while our product

can be applied to the entire domain of the restaurant and catering business, focusing on a specific

business provides us with more precise and consistent data. A company such as Guckenheimer

would be an ideal client, as they staff multiple corporate kitchens across the nation, including

kitchens for Groupon and even Google. A large scale company such as this this can apply our

software to each and every kitchen, cutting down costs on a very large scale.

Our software will allow our client to customize the database to suit the needs of each kitchen

individually. They can vary in recipes, vendors from which they order their products, and

threshold levels. This provides a uniform product that can be customized at a smaller scale. Our

client would need to purchase multiple licenses, or more likely a corporate subscription that

would allow them to use the software in multiple kitchens. We would also offer single use

licenses to appeal to restaurants that only need to manage a single inventory of goods.

User of the product

The main users of the product would be kitchen management and staff. The management would

approve the orders that would be sent out, provide vendor information, upload recipes, and set

threshold levels. Many of these tasks, such as the information regarding vendors, recipes, and

threshold levels would need to be set only once. Of course, the option to add, remove, or update

this data would be implemented as well. Once this initial step has been taken, our software will

require nothing more than a weekly approval for the orders being sent out, minimizing the work

that management has to complete in order to insure the correct amount of inventory is available.

Kitchen staff would be responsible for updating the amount of product sold at the end of the day.

Each day, the register prints out the products sold and the quantity of each product sold. Instead

of manually subtracting that amount from the inventory, they input the amounts sold into our

software which will do the number crunching for them. This data is also stored into the

“predictions” feature for future use.

Domain Expert

Ms. Kimberly Harmon, employee of Guckenheimer, chef at Groupon Chicago Office

Phone: 801.361.6597

Email: kharmon128@hotmail.com

Hardware Requirements

Processor - Intel Dual-core processor, 2.0 GHz or higher

RAM - Minimum 2 GB of RAM

Network interface chip

Hard Drive - 500 GB

Software Requirements

Operating System: Windows XP or higher.

Front End: VB.NET (Visual Studio 2010)

Back End: Microsoft Access 2010

Overall UML Diagram

Typical Use Cases

1) Update resource database

Use case name UpdateResourceDatabase

Participating

Actors

Initiated by Manager(admin) or Chef

Flow of events 1. The Manager or Chef activates the update resource database function

2. The Manager or Chef inputs the amount of each item sold.

3. The System reads the sold food data and then further reads, from the

ingredients database, the ingredients that were used in making of the food items

that were sold. The System now calculates the amount of resources used and

will deduct the amount of ingredients that were used up from the resource

database.

Entry

condition

The Manager(admin) or Chef is logged on to the System

Exit condition If the process was successful, the Manager/Chef receives an acknowledgement

that the process was completed successfully.

 OR

If the process was not successful, the Manager will receive an explanation of

what error had occurred during the process.

Quality

Requirements

The update process must complete successfully and without errors.

2) Check inventory

Use case name CheckInventory

Participating

Actors

Initiated by Manager(admin) or Chef

Flow of events 1. The Manager/Chef activates the “Check Inventory’ function on his/her

terminal.

2. The System displays the current estimated inventory of ingredients to the

Manager/Chef.

4. The System will compare the current levels of ingredients with the pre-set

threshold levels.

5. If the levels of ingredients are found to be below threshold, it will create

orders for purchase and sends it to the Manager for approval.

6. The Manager/Chef is notified of the process completion

Entry condition The Manager/Chef is logged into System.

Exit condition Successful Acknowledgement.

Quality

Requirements

The function accurately calculates the inventory that should be left when all

of the orders have been calculated

3) Add Recipe

Use case name AddRecipe

Participating

Actors

Initiated by Chef/Manager

Flow of events 1. The Chef/Manager activates the “Create New Recipe” function on his/her

terminal

2. The System responds by presenting a form to the Chef/Manager

3. The Chef/Manager completes the form by inserting ingredients to be used in

the new recipe. The Chef also inputs the amount of ingredients to be used in a

single order of the recipe. After the form has been completed the Chef submits

the form to the System.

4. The System acknowledges that the new recipe has been created. It also adds

it to the recipe database.

Entry condition The Chef/Manager is logged into System

Exit condition The Chef/Manager has received an acknowledgment from the System.

 OR

The Chef/Manager has received an explanation of why the process couldn’t be

completed.

Quality

Requirements

The process must complete successfully with the new recipe added to the

recipe database without any errors.

4) Update recipe

Use case name UpdateRecipe

Participating

Actors

Initiated by Chef/Manager

Flow of events 1. The Chef/Manager activates “Update Recipe” on system

2.System responds by bringing up list of recipes

3. The Chef/Manager chooses a recipe to change

4. System updates by showing list of ingredients in chosen recipe

5. The Chef/Manager changes the recipe by choosing new ingredients or

updating the amount of ingredients used in the recipe. The Chef then finishes

the update by selecting the finished command on the system.

6. The System confirms that the change has been made and updates the

database.

Entry condition The Chef/Manager is logged into System

Exit condition The Chef/Manager receives an acknowledgment from the System,

 OR

The Chef/Manager has received an explanation of why the process couldn’t be

complete.

Quality

Requirements

The update process must be complete successfully without any errors.

5) Remove recipe

Use case name RemoveRecipe

Participating

actors

Initiated by Chef/Manager

Flow of events 1. The Chef/Manager activates the “Remove Recipe” function on his/her

terminal

2. The System responds by showing the current list of recipes saved on the

System.

3. The Chef/Manager chooses which recipe(s) to remove and removes them by

selecting a delete button through the terminal window.

4. The System confirms with each deletion with the Chef/Manager if he/she

wants to delete the recipe.

5. The Chef/Manager confirms his/her decision with a yes/no

6. The System acknowledges the decision by either removing the recipe if

responded with “yes” or by canceling the delete if responded with “no”. It then

displays an acknowledgment of the decision by displaying a delete successful

or a canceled request.

7. The System notifies the Chef/Manager about the change and requests new

threshold levels for ingredients from deleted recipes.

Entry

condition

The Chef/Manager is logged in System

Exit condition The Chef/Manager has received an acknowledgment that the recipe has been

deleted.

 OR

The Chef/Manager has received an acknowledgment that the recipe has not

been deleted.

 OR

The Chef/Manager has received an explanation of why the process couldn’t be

completed.

Quality

Requirement

The removed recipe should not reflect in any other list or connected database.

6) Adding an occasion/busy days/weekends etc.

Use case name AddOccasion

Participating

actors

Initiated by Manager

Flow of events 1. The Manager activates the “Add Occasion or Event” function on his/her

terminal.

2. The System displays a form to be filled out by the manager.

3. The Manager fills out the form by adding a name

of the event or occasion and selecting the date(s) the event is to be held.

4. The System takes the data from the form and calculates the amount of

ingredients that may be used up for the given dates.

5. The Manager is notified of the calculations and accordingly orders

requests are initiated.

6. On successful completion of this process, an acknowledgement is sent to

the Manager.

Entry condition The Manager is logged into System.

Exit condition The Manager receives a notification of successful completion of the project

OR

The Manager is notified that the process was not complete with a valid

explanation of the error that had occurred during the process.

Quality

Requirements

The Occasion is accurately added to the database.

7) Approve Purchase Order

Use case name ApprovePurchaseOrder

Participating

actors

Initiated by Manager

Flow of events 1. The Manager reviews the purchase order created by the System.

2. After successful review, the manager either approves the purchase order

right away or makes changes to the order and then provides approval.

3. After receiving approval from the Manager, the System will send out

purchase orders to respective Vendors.

4. Manager receives an acknowledgment of the process completion.

Entry condition Manager is logged on to the System

Exit condition Orders are sent successfully

Quality

requirements

The purchase orders are sent successfully to designated vendors.

8) Updating inventory once order is received

Use case name UpdateInventory

Participating

actors

Initiated by Manager

Flow of events 1. The Manager activates the “Update Stock inventory” function on his/her

terminal.

2. The System updates the inventory database based on the amount ordered

from the vendors. The System then displays the amount that it calculated to

the vendor and waits for approval from the Manager.

3. The Manager either approves the amount calculated or updates amounts in

the inventory.

4. If the Manager updates the inventory, the System updates its values of the

inventory.

Entry condition The Manager is logged into the System

Exit condition The Inventory levels are successfully updated

Quality

Requirements

The number shown to the manager accurately shows the actual amount of

ingredients stored

9) Add vendor

Use case name AddVendor

Participating

actors

Initiated by Manager

Flow of events 1. The Manager activates the “Add Vendor” function on his/her terminal

2. The System responds by displaying a form to be completed by the Manager

of the vendor to be created.

3. The Manager completes the form by filling the information of the vendor to

be created and also the ingredients that will be ordered from that vendor. After

all of the information has been filled in, the Manager then submits the form.

3. The System takes the information from the form and adds the vendor the

database of vendors. It then displays an acknowledgment to the Manager that

the Vendor has been created.

Entry condition The Manager is logged in System.

Exit condition The Manager has received an acknowledgment that the vendor has been

created.

 OR

The Manager has received an explanation of why the process couldn’t be

completed.

Quality

Requirements

The Vendor has been accurately stored into the database

10) Remove Vendor

Use case name RemoveVendor

Participating

actors

Initiated by Manager

Flow of events 1. The Manager activates the “Remove Vendor” function on his/her terminal

2. The System responds by showing the current list of Vendors saved to the

System.

3. The Manager chooses which vendor(s) to remove and removes them by

selecting a delete button through the terminal window.

4. The System confirms with each deletion with the Manager if he/she wants to

remove the vendor.

5. The Manager confirms his/her decision with a yes/no

6. The System acknowledges the decision by either removing the vendor if

responded with “yes” or by canceling the delete if responded with “no”. It then

displays an acknowledgment of the decision by displaying a delete successful

or a canceled request.

Entry condition The Manager is logged into the System

Exit condition The Manager has received an acknowledgment that the vendor has been

removed.

 OR

The Manager has received an acknowledgment that the vendor has not been

removed.

 OR

The Manager has received an explanation of why the process couldn’t be

completed.

Quality

Requirements

The Vendor should not appear in the list of active vendors or any other

database

Architecture Breakdown

Front End:-

Back End:-

• GUI Design

• Database Modelling

• Control Design

Visual Basic 2010 - Front End

M
S

 A
cc

es
s

2
0

1
0

 -
B

ac
k

E

n
d

Design Tables

Recipe Table

Ingredients Table

Vendors Table

Design Forms

Add/update/delete
Recipe

Add/update/delete
Vendors

Sales report form

Basic Database Relationship Diagram

Assignment of responsibilities

Ingredients

-Threshold

-Available Resources

Recipe

Vendors

*

1

*

1

Visual
Basic 2010

GUI Design Akshay

Modelling Bart

Control
Design

Simant

MS Access
2010

Design
Tables

Bob

Design
Forms

Simant

Project Work Plan (Gantt Chart)

